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The effect of short regions of high surface curvature 
on turbulent boundary layers 
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Measurements, including one-point double, triple or quadruple mean products of 
velocity fluctuations, have been made in low-speed turbulent boundary layers on flat 
surfaces downstream of concave or convex bends with turning angles of 20 or 30 
degrees, the length of the curved region being at most 6 times the boundary-layer 
thickness at entry. These short bends approximate to ‘impulses’ of curvature, and 
the object of the work was to investigate the impulse response of the boundary layer, 
essentially the decay of structural changes downstream of the bends. The work can be 
regarded as a sequel, with much more detailed measurements, to the study by SO & 
Mellor (1972, 1973, 1975) who investigated the response to step increases of curvature: 
turbulent boundary layers being nonlinear systems, responses to several kinds of 
curvature history are needed to assemble an adequate description of the flow. The 
most striking feature of the ‘impulse ’ response is that the decay of the high turbulent 
intensity found at  exit from the concave bends is not monotonic; the Reynolds 
stresses in the outer layer collapse to well below the level at  entry, and are still falling 
slowly at the end of the test rig although in principle they must recover eventually. 
On the convex (stabilized) side the flow recovers, monotonically in the main, from 
a low level of turbulent intensity a t  the exit. The pronounced second-order response 
on the concave side can be explained qualitatively by interaction between the shear 
stress’and the mean shear and is not peculiar to curved flows, but in the present cases 
the response is complicated by large changes in the dimensionless structure parameters 
related to double or triple mean products of velocity fluctuations. Strong spanwise 
variations, due presumably to longitudinal vortices, further complicate the flow in 
the concave bends, and decay only very slowly downstream. 

1. Introduction 
This paper is one of a series on ‘complex’ turbulent flows (defined as shear layers 

with complicating influences like distortion by extra rates of strain or interaction 
with another turbulence field). General reviews of complex flows are given by Bradshaw 
(1975, 1976). The latter paper outlines the Imperial College research programme, 
whose final goal is the improvement of calculation methods for turbulent flows of 
interest to engineers; virtually all of these flows are recognizable as shear layers even 
if they change too rapidly to satisfy the thin-shear-layer (‘boundary-layer ’) approxi- 
mation. Examples of extra rates of strain, additional to the simple shear aU/ay that 
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drives the shear layer, include lateral divergence a Wlaz, discussed in the companion 
paper by Smits, Eaton & Bradshaw (1979; hereafter cited as 11), and streamline 
curvature in the plane of the simple shear, avlax. Streamline curvature can be 
imposed either by rotation of the whole system (e.g. Johnston, Halleen & Lezius 
1973; Lezius & Johnston 1976; Koyama et al. 1978) or by the boundary geometry 
in a non-rotating Aow. In all cases the interest is in the effect of the distortion on the 
dimensionless parameters describing the turbulence structure (hereafter called the 
‘structure’) and thus on the dimensionless constants or functions appearing in meth- 
ods for calculating dimensional properties such as Reynolds stress. 

Streamline curvature is probably the commonest example of an extra strain rate, 
and the effects of prolonged streamline curvature, leading to the establishment of a 
new near-equilibrium turbulence structure, have been studied by many experimenters. 
Publications since the review by Bradshaw (1973) include So & Mellor (1973, 1975) 
and So (1975), whose work will be discussed in some detail below, and Meroney & 
Bradshaw (1975) whose measurements in 25’ bends with radii of about 100 times the 
thickness of the initial boundary layer have been continued by Hoffmann & Bradshaw 
(1978) and paralleled and extended by Ramaprian & Shivaprasad (1978). Guitton & 
Newman (1977) have presented Reynolds-stress measurements in wall jets on convex 
surfaces. 

Although the effects of prolonged streamline curvature are by no means fully 
understood, study of the effect of sudden changes in curvature is justified because of 
their frequency of occurrence in practice and because the step response or impulse 
response of a system, even a nonlinear one, should help to illuminate the ‘steady-state’ 
behaviour. The present results, indeed, provide a spectacular proof that a turbulent 
shear layer behaves like a second-order system with sub-critical damping. The response 
of a given flow to a true impulse of curvature - that is, an infinitely rapid deflexion 
of the flow through a given angle - must be a function only of the angle, as in the case 
of Taylor-Gortler instability (Tobak 1971): therefore we expect the response to a 
short region of finite curvature to depend mainly on the total turning angle and not on 
the radius of curvature as such. Of course, the state of the turbulence at  exit from a 
short bend (initial response to a curvature impulse) will still be far from the equilib- 
rium state it would reach if the bend continued indefinitely at  the same curvature 
(asymptotic response to a step-change in curvature). The present measurements for 
an approximation to a curvature impulse in the rig shown in figure 1 may be 
regarded as a more detailed sequel to the measurements by So & Mellor (1972, 1973, 
1975; the second and third papers are updated excerpts from the first) downstream 
of step increases in curvature. The states of the flow at exit from the 30” bends with 
S/R -N 0-085-0.17 used in the present work are roughly the same as the near- 
asymptotic states reached in So & Mellor’s measurements with S/R _N 0.035-0-05, 
the two figures for S/R being for the concave and convex sides respectively. The ratio 
of the extra strain rate to the mean shear is about the same in the present experiments 
on a convex surface as in the measurements of Castro & Bradshaw (1976) in a mixing 
layer with a short region of stabilizing curvature, but in the latter case the deflexion 
angle was 90 degrees compared to 20 or 30 degrees in the present work. 

In  the rig shown in figure 1, boundary layers which have developed on flat surfaces 
encounter short regions of large surface curvature, of either sign, and then relax again 
on flat surfaces. There are small favourable pressure gradients over the flat surfaces 
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I 
FIGURE 1. General arrangement of test rig. Dimensions in mm. 

and large pressure gradients of either sign in the curved regions, but pressure 
gradients do not appear directly in the Reynolds-stress transport equations and 
are therefore unlikely to affect the turbulence structure directly. No detailed 
measurements were made within the bends because the object was to  simulate a 
curvature impulse, but approximate skin-friction measurements with Preston tubes 
confirm that the boundary lagers were far from separation everywhere. The use of a 
sharper bend would have involved some danger of separation, a t  least in the corners 
of the test rig, but the results show that the present bend was not sharp enough to 
simulate a curvature impulse accurately in the concave case. The increase in shear 
stress 7, and therefore in i)r/ay, within the concave bends is so large that the total 
pressure on a given streamline changes significantly between entry and exit, a dis- 
tance of about 66: thus, the velocity profile a t  exit from the bend, where the static 
pressure becomes uniform again, is already significantly different from the entry pro- 
file. I n  the case of a true impulse, the shear stress and other turbulence properties 
would change instantaneously and the change in total pressure would follow more 
slowly. On the convex side of the bend the shear stress in the outer layer is greatly 
reduced and the velocity profile is therefore almost frozen for y/S > 0.4. The failure 
to simulate an impulse of curvature accurately does not seriously complicate the 
qualitative interpretation of the results and is of no consequence in quantitative 
comparisons with calculation methods. 

The 20 degree concave bend has the same shape in side view as the cylinder-flare 
body of revolution tested in 11. The latter experiment was intended primarily as an 
investigation of lateral-divergence effects, but i t  is impossible to pass from an axial 
flow to a laterally diverging one without either three-dimensional effects (on a flat 
surface) or surface curvature (if a body of revolution is used) and the latter was accepted 
as the lesser evil. Therefore the 20 degree plane-bend flow was set up so that the effects 
of surface curvature could be studied separately. The original hope was that the 
curvature effects would die out quickly enough downstream of the bend that the effects 
of divergence alone could be deduced by subtracting the residual curvature effects 
(measured in two-dimensional flow) from the measurements on the body of revolution. 
The long persistence of curvature effects complicates matters, but a comparison of the 
two-dimensional and axisymmetric results is still instructive and is undertaken in 11. 

The results of the present experiment, summarized in figure 2 for the 30 degree 
bend, show extremely large effects of surface curvature. The shear stress a t  exit from 

8-2 
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FIGURE 2. Positions of traverse stations and key to results (30" bend only). A ,  T N 0.001, 
ui 2: 0.13, V, + 0.015; B,  T N 0.0025, ui N 0.2, V ,  + 0.04; C, T 2: 0, a; 2: 0, V ,  + 0.001; D, 
T N 0.0005, u; 2: 0.12, V, --f 0.02; E ,  T 2: 0.0005, ui 21 0.13, V, + 0.002; F ,  T N 0.0002, u; 1: 0.09, 
V, + 0.015; G, 7 2: 0.001, ui u 0.14, V, + 0.004; H ,  T N 0.00015, a; 2: 0.06, V,  -+ 0.013; I ,  
7 2: 0.001, a; 2: 0.14, V, + 0.015. T, a; are dimensionless shear stress and stress/energy ratios 
at y = 0.58: V, is energy transport velocity a t  y N 8. 

the bends is of the same order as that predicted by the linear correction formulae 
(Bradshaw 1973) devised for small curvature effects, whereas we had expected that 
strong self-limiting nonlinearities (' stiff' response) would occur. In  the 30 degree 
concave bend the shear stress a t  y/8 N 0.4 increases by a factor between 2.2 and 5.5 
(depending on spanwise position) in a streamwise distance of 68. The large shear-stress 
gradients normal to the surface greatly reduce aU/ay in the outer part of the layer, so 
that after the end of the regions of destabilizing curvature the generation term in 
the shear-stress transport equation, Ta Ulay, falls rapidly below its equilibrium value, 
leading to a fall in the shear stress and hence, via the turbulent energy equation, in 
u2, w2, a n d 2  which produces a further fall in shear stress. There are also large changes 
in the dimensionless structure parameters. Recovery is extremely slow. The large span- 
wise variations found a t  the bend exit persist as the flow proceeds downstream; only 
limited measurements of flow direction have been made but indirect measurements 
strongly suggest that the longitudinal vortices found by other workers are formed in 
the bend and persist almost indefinitely downstream. Results for the 20 degree concave 
bend are similar but less spectacular. At exit from the 30 degree convex bend the shear 
stress in the outer layer is very small, but since, as a result, aU/ay is nearly the same as 
a t  entry to the bend, and since 3 is only a factor of two or three less than at entry, 
regeneration of shear stress is comparatively rapid: further downstream, the shear 
stress and intensity rise above the values a t  entry to the bend, although in contrast to 
the concave cases the structural parameters appear to return monotonically to the 
undisturbed values. This behaviour is similar to that of Castro & Bradshaw's 
(1976) mixing layer. 

The tendency of the longitudinal vortices to persist is aggravated by the collapse 
of the turbulence downstream of the concave bends, leading to very low mixing rates. 
As a result the flow, even at  the end of the test rig, is far from two-dimensional and 
complete mapping in cross-sectional planes would be needed to define it. This was not 
expected when the experiment was planned, and we felt that such exhaustive measure- 
ments would not be justified until the process of triggering the vortices was better 
understood and if possible controlled. 

The results as they stand provide useful information for the development or testing 
of calculation methods for highly curved surfaces but further work on this subject, 
and on the application of conditional-sampling techniques to the further study of mean 
and fluctuating longitudinal vortices in curved flows, will be reported separately. 

-- 
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Section 2 describes the apparatus and techniques, while 5 3 presents the results, 
with some preliminary discussion of velocity and shear stress profiles. Section 4 
demonstrates analytically that the non-monotonic recovery of the shear stress and 
velocity profiles downstream of the curved region is a universal feature of turbulent 
shear layers and not a special consequence of structural changes induced by curvature. 
Section 5 is a detailed discussion of the results, including intensities, triple products 
and structure parameters, while 5 6 continues the discussion with special reference 
to calculation methods. More detailed results and discussion are presented by Smits, 
Young & Bradshaw (1978; hereafter cited as A). 

2. Apparatus and techniques 
The test rig, shown in figure 1, consists of a duct 762 mm wide and 127 mm high, 

supplied from the blower-contraction unit described by Bradshaw ( 1972). The nominal 
flow speed, used as a reference velocity and denoted by Urep below, was about 32 m 8-l 

(Ur,f/v N 2.1 x 106 m-1) for all measurements reported here. Because of boundary- 
layer growth, the free-stream velocity increases by about 5 per cent between the 
contraction exit and the entry to the bend, a distance of 1448 mm (values of pressure 
coefficient in figure 3 are relative to the static pressure a t  the point of measurement of 
U r e f ,  slightly inside the contraction; a t  the contraction exit, cp  is roughly -0.07).  
The pressure-gradient parameter ( 8 * / ~ ~ , )  dp/dx just before the bend is only about 
- 0.05, and the skin friction coefficient is negligibly different from the expected value 
of 0.00295 for a constant-pressure flow a t  the local Reynolds number U, O/v of about 
6000; the Coles wake parameter II is about 0.50. Low-Reynolds-number effects on the 
velocity-defect profile and the turbulence structure in the outer layer should 
have been negligible, a t  least at entry to the bend. 

The bend radii were 127 mm on the convex side and 254 mm on the concave side, 
approximately 6 and 12 times the boundary-layer thickness S,,, a t  entry, 8, E 2 1 mm. 
Bend angles of 10, 20 or 30 degrees could be set by interchangeable shaped blocks, 
and the bends were followed by another 127 mm high section, of length 1448 mm or 
about 668,. Since the ratio of duct width to boundary-layer thickness a t  the bend was 
about 36 and the flow in the centre-plane was far from separation, no boundary-layer 
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Case Symbol x (mm) S,,, (mm) v,/urQt 
Concave, 30 deg., C,,,,, 0 - 251 21.87 1.071 

(CCBOC) 0 30 28.40 1.079 
n 183 31-30 1.100 
0 335 34.29 1.106 
H 635 39.56 1.118 

945 44-15 1.127 
1250 45.89 1.149 

Concave, 30 deg., C,,,,, 0 - 251 21.87 1.071 
(CC30T) 0 4 31.91 1.079 

0 310 40.88 1.106 
A 91 9 55.20 1.127 

Concave, 20 deg., C,,,, 0 - 234 18.79 1-07 1 
(CC2OC) 0 4 22.49 1.040 

A 157 24.70 1.087 
0 310 26.78 1.092 
A 91 9 34.66 1.112 

Convex, 30 deg. (CV30) 0 - 185 21.88 1.105 
0 30 23.64 1.114 

0 335 26.61 1.106 
635 29.35 1.115 : 1250 36.32 1.138 

8 
A 157 36.10 1.100 

n 183 25.15 1.102 

TABLE 1. Free-stream velocity, boundary-layer thickness S,,, and symbol key. 

control devices were fitted to limit secondary flow near the side walls in the bend 
region. 

The measurement techniques used are described in A and were generally con- 
ventional. Mean velocities were measured with Pitot tubes and turbulence quantities 
with constant temperature hot-wire anemometers; hot-wire signals were recorded on 
analogue magnetic tape and later transcribed to digital tape for batch processing 
(including linearization). 

The measurements were intended mainly to permit evaluation of the terms in the 
transport equation for the Reynolds shear stress -PUT, and full w component 
measurements were not made. 

During the course of the measurements the wind-tunnel inlet filter and screens were 
occasionally cleaned and towards the end of the work the wide-angle diffuser was 
shortened from the arrangement described by Bradshaw (1972) to that  shown in 
figure 1.  These changes affected the spanwise distribution of skin friction, notably 
downstream of the concave bends, but each data set is self-consistent and the corres- 
ponding skin friction distributions are plotted in figure 6. 

3. Results and preliminary discussion 
Four sets of results are presented below. More details are given in A and tabula- 

tions are available from the authors a t  Imperial College. Concave-surface flows 
exhibit strong spanwise variations and, for the 30 degree bend, complete sets of data 
were recorded in two streamwise planes at one maximum and one minimum point 
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0, concave (trough), CC3OT ; A, convex, CV30. Approximate Preston-tube measurements 
within 30" bend: - - - -, concave; - * -, convex. Bars ending at x = 0 show bend lengths. 

x (mm) 

on the spanwise distribution of surface shear stress, the spanwise distance between 
the two measurement planes being 25 mm or about 1.2 times the initial boundary- 
layer thickness. Adopting So & Mellor's convention of referring to the positions 
of the maximum and minimum cf as the 'crest' and 'trough' respectively, the four 
main cases are coded as follows: 

CC3OC (Concave bend, 30 degree turning angle, a t  Crest position); 
CC30T (Concave bend, 30 degree turning angle, at  Trough position); 
CCZOC (Concave bend, 20 degree turning angle, at  Crest position); 
CV30 (Convex bend, 30 degree turning angle, spanwise position immaterial). 

Except for mean velocity profiles and skin-friction coefficient, the results are made 
dimensionless with Urei and S,,, (the value of y at  which U = O.995Ue, hereafter referred 
to as ' 8 ' ) .  Values of U,/U,,, and S (mm) are given in table 1. 

The following further conventions are used: the first measurement station, 120- 
140 mm upstream of the start of the bend according to the case considered, is called 
the 'entry'; the second station, 4 or 30 mm downstream of the origin of co-ordinates 
at  the end of the bend, is called the 'exit'; the 'last measurement station' is at  
z = 1250 mm for CC3OC and CV30 and a t  x = 919 mm for the other two cases. The 
words 'convex ' and 'concave ' are used to distinguish the flows even when the dis- 
cussion relates to the flat surfaces downstream of the bends. 
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3.1. Integral parameters 

The skin-friction coefficient cf = r,/+pU,2 is plotted against x in figure 4. The dotted 
lines within the bend region are approximate Preston tube values for CCSOC and CV30, 
obtained at an early stage in the work and intended for guidance only: the variation 
within the bend is broadly the expected response to pressure gradient. It is seen a t  
once that the most downstream values at  x 2: 1250 mm are still far from the constant- 
pressure values for the corresponding q O / v ,  which differs from case to case: the 
pressure gradient in the downstream part of the duct is small, and virtually the same 
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25 
-0.112 

2.058 
-4.814 
- 566 

28 
- 0.105 

1.914 
- 7.102 
- 489 

28 
-0.113 

1.567 
- 4.763 
- 467 

25 
- 0.330 

0.806 
0.379 
6353 

178 
- 0.209 

1.918 
2.385 
1044 

180 
- 0.210 

1.788 
- 1.000 
- 3431 

180 
-0.216 

1.956 
1.545 
1316 

178 
-0.211 

0.976 
- 0.532 

5658 

330 

1.843 
1.508 
1550 

- 0.224 

333 
- 0.225 

1.583 
- 0,945 
- 4083 

333 
- 0.232 

1.747 
0.826 
2960 

330 

1.094 

13150 

-0.219 

- 0.242 

483 
- 0.236 

1.685 
0.900 
2821 

- - 
- 
- 
- 

- 
- 
- 
- 
- 

483 
- 0.230 

1.172 

58580 
- 0.040 

940 

1.598 
0.675 
4080 

- 0.267 

942 

1.340 
- 1.442 
- 3532 

- 0.267 

942 

1.590 
0.561 
4608 

- 0.273 

940 

1.244 

57430 

- 0.259 

- 0.065 

1245 
- 0.297 

1.528 
1.009 
2910 

- 
- 
- 
- 
- 

- 
- 
- 
- 
- 

1245 
- 0.288 

1.252 
- 0.177 

22780 

TABLE 2. Virtual origin of lateral convergence/divergence : B / ( x  - z0) assumed equal to  
+cf - (0/ U,) (H + 2) dU,/dx - dO/dx, where U,/ Urel = (1 - c p ) t .  

in all cases, so that the differences between the concave and convex sides downstream 
of the bends are due almost entirely to the long-lasting effects of surface curvature. 

The boundary-layer thicknesses and shape parameter Hare plotted in figure 5. Note 
that the boundary-layer thickness is a minimum a t  the ‘crest’ (maximum in c f )  and a 
maximum a t  the ‘trough’. As usual, the trend in H is opposite to the trend in cf, 
and the only point to be noted at present is the very large change in H through the 
bend, implying that most of the velocity profile, and not merely cf or the velocity close 
to the surface, is affected; this in turn implies large shear-stress gradients, within the 
bend, over most of the boundary-layer thickness. 

Since the pressure gradient downstream of the bend is small, differences between 
dS/dx and i c f  imply three-dimensional effects. Table 2 gives the imbalance in the 
momentum integral equation a t  each measurement station; if convergence/divergence 
were collinear and all measurement errors and neglected terms negligible, this would 
be equal to S / ( x  - xo) where xo is the virtual origin of the divergence. Even when the 
cross-flow is non-collinear, as in the present concave cases (at least), x - xo is still a 
useful quantity for semi-quantitative assessment. The convex case has mild conver- 
gence (virtual origin about 20 m downstream of the test section), attributable to 
secondary flows, generated within the bend, on the end walls. The concave cases have 
lateral divergence a t  the crest and convergence a t  the trough, aa expected if the 
spanwise variations are caused by pairs of longitudinal vortices ( V < v, a W / &  > 0 
a t  the crest in c f ( z ) ,  V > B a t  the trough one-half wavelength to the side). 
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Figure 6, in which most quantities are normalized by their maximum values with 
respect to z, shows the spanwise variations of the skin-friction coefficient (measured 
with Preston tubes) and other quantities. Figure 6 (a) shows how the cfpattern changes 
through the 20' and 30" concave bends; here the downstream readings are roughly 8 
boundary-layer thicknesses from the bend exit. The upstream pattern, imposed 
by inevitable irregularities of weave in the wind-tunnel damping screens, obviously 
has some effect on the shape of the downstream pattern - although the dominant 
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FIGURE 6(g, h). For legend see opposite page. 

wavelength is set by the boundary-layer thickness - but the amplitude of the 
pattern depends mainly on the bend angle. This is shown by figure 6 ( b ) ;  recently the 
metal screens were replaced by polyester ones of nearly the same open-area 
ratio, about 0.58, which reduced the amplitude of the upstream pattern by a factor 
of about two, while the amplitude of the downstream pattern was nearly as large 
as before. Figure 6 (c )  compares the effect of concave and convex bends of 20 degree 
angle: these measurements were made on the floor of the tunnel (the convex side in the 
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main measurements). A convex bend actually reduces the spanwise variations caused 
by the tunnel screens. This is not necessarily expected, and strongly suggests that the 
screen-induced disturbances are themselves longitudinal vortices, as hypothesized 
by Bradshaw (1965): if this is so the convex bend would attenuate the vortices, 
and ordinary turbulent mixing would then efface the spanwise variations - apparently 
quite rapidly. 

Figure 6(d) shows how the pattern persists, almost unaltered, downstream of the 
bend. This pattern corresponds to the main sets of results for CC3OC (z = 0) or CC30T 
( z  = 25 mm; the trough was not tracked as it drifted across the tunnel with increasing 
z). The upstream pattern corresponding to these results (and to CCBOC) was closely 
similar to that for x = - 260 mm in figure 6 ( a )  but translated across the test rig so 
that its main peak occurred a t  x = 0. Figure 6 (e )  shows the mean velocity patterns a t  
y 21 0.258 at the same x positions as the cf patterns in figure 6 ( d ) ,  which they closely 
resemble. One must not too quickly deduce that the flow at a given z position is quasi- 
two-dimensional, obeying the usual relations between velocity-profile shape and c f :  
however it is fair to infer that the longitudinal vortices which maintain the spanwise 
variations do not greatly affect the structure of the inner layer. The peak-to-peak 
variations of U and cf are of the order of 10 and 20 per cent, but figure 6 (9) shows very 
much larger variations in the Reynolds stresses, in antiphase with c f .  At x = 1415 mm, 
8 varies between about 45 and 60 mm and so the spanwise wavelength of the above- 
mentioned quantities is roughly equal to the local boundary-layer thickness. The 
wavelength is of course set in the bend, where S is of the order of 25 mm, so that the 
preferred wavelength is roughly twice the entry boundary-layer thickness, as would 
be expected if the basic pattern was a pair of contra-rotating vortices with a diameter 
only slightly less than 6. There is perhaps some slight evidence from figures 6 (c)  and 
6 ( d )  that alternate peaks are starting to disappear at  x E 1400 mm, restoring the ori- 
ginal ratio of wavelength to boundary-layer thickness: this effect is often found in 
measurements of disturbances introduced (on plane surfaces) by wind-tunnel screens 
(e.g. Fernholz 1962). 

3.2. Profiles 
The distortions of the mean-velocity profiles, Reynolds stress profiles and structural 
parameters presented in figures 7-15 are so spectacular that a brief overall description 

FIGURE 6. Spanwise variations : most quantities except skewness and flatness normalized by 
local maxima. Figures S(CE-4) refer to 30" concave bend (CC30), mainly a t  z N 170 and/or 
1400 mm. (a) Effect of concave bends on c, (patterns corresponding to main concave-surface 
results are similar but displaced about 25 mm in positive z position). 0, upstream (z = - 260 mm) ; 
0 , downstream of 20" bend ( z  = 173 mm); V, downstream of 30" bend (a: = 168 mm). (b )  
Effect of concave bend on c,, normalized by centre-line values : screens replaced. 0, upstream ; 
V, 30" bend, downstream (z  _N 1500 mm). (c) Effect of 20" concave and convex bends on c, 
(lower surface; convex side in main results). 0, upstream (z = - 271 mm) ; 0, downstream of 
concave bend (a: = 160 mm) ; 0 ,  downstream of convex bend (z = 1GO mm). ( d )  Persistence 
of C, pattern downstream of 30" concave bend (as in main results). 0, z = 168 mm; 0, 
z = 1415 mm. ( e )  U-component mean velocity pattern a t  y 2: 0.256 downstream of 30' concave 
bend. 0, z = 168mm, y = 8.9mm; 0, z = 1415mm, y = 12.5mm; A. convex bend, 
z = 170 mm, y = 7.1 mm. (f) 1'-component mean velocity pattern at  y N 0.256 downstream 
of 30" concave bend. n, .z = 1G8mm, y = 8.9mm; 0, z = 1415mm, y = 12.5mm. (9)  
Reynolds-stress pattern at  y N 0.256 downstream of 30' concave bend, z = 1382 mm, 
y = 12.6 mm. 0, u2; n, va; A, -uw. (h)  Transverse shear stress, x = 945 mm, y = 3.9 mm 

- - - 

(y/6 N 0.09). 
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is needed before the detailed discussion ( 5  5). As already stated, the effects of the 
longitudinal pressure gradient within the bend on the flow a t  exit are expected to be 
small, because the change of free-stream velocity from entry to exit is small, and are 
ignored below. Figure 2 gives the main points for the 30 degree bends. 

3.2.1. Initial response. We begin by discussing changes within the bends; in figures 
8-15 the profiles denoted by symbol 0 are at  entry to the bends and those denoted by 
symbol 0 are a t  exit (precise positions are given in table 1). 

In all cases the largest effects of curvature are found in the outer layer, where the 
ratio of the extra strain rate aV/ax to the simple shear aU/ay, or to a typical eddy 
strain rate, is largest. Close to the surface, the velocity and shear stress are connected 
by the law of the wall and, except in strong pressure gradients, neither will change 
drastically. Therefore the best entry to the results is to consider the effect of stabilizing 
or destabilizing curvature on shear-stress profiles whose end points, at  y = 0 and 
y = 8, are fixed or nearly fixed. 

An increase in shear stress within the layer, as in the concave (CC) cases, leads to 
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positive a( -G) /ay  near the surface and negative a( - z ) / a y  near the edge. It follows 
from the streamline-co-ordinate form of the momentum equation for a thin shear 
layer, 

that the total pressure P increases along a streamline (9 = constant) for values of 
y below the peak in -&, and decreases above the peak. In  the case of CC3OC it  can 
be deduced from the mean velocity profiles (figure 7a)  that the total-pressure change 
through the bend is an increase for y/6 < 0.25 and a decrease for y/8 > 0.25; the peak 
in shear stress (figure 1Oa) moves from y/S = 0 a t  entry to y/6 21 0.3 a t  exit. The 
velocity gradient aU/ay at  y/6 N 0.25 decreases by nearly a factor of three between 
entry and exit. In  the convex case, CV30, the shear stress within the layer decreases, so 
a( - z ) / a y  at exit (figure 1Od) is large and negative for y/6 c 0.4 and virtually zero 
for y/S > 0.4. Therefore the total pressure decreases through the bend for y/S < 0.4 
and remains nearly constant for y/6 > 0-4; aU/ay at y/S N 0.1 increases to nearly 
three times its value a t  entry. By the time the flow has reached the next measurement 
station (30 mm downstream of the bend exit proper) the resulting increase in the 
generation t e r m 2  aU/ay in the shear-stress transport equation has led to the appear- 
ance of a sharp peak in shear stress a t  y/6 N 0.1: this peak is therefore part of the 
recovery process rather than of the initial response to stabilizing curvature, which is, 
as just noted, a decrease in shear stress. It should be noted that the fact that - G i s  
close to zero for y/6 > 0.4 a t  the exit in CV30 is a coincidence; negative values of shear 
stress referred to co-ordinates aligned with the local surface are not prohibited. 

The 'turbulent transport velocities' plotted in figure 14 and 15 also increase 
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BIGURE 10. Shear stress profiles. (a) CC3OC; ( b )  CC30T; 
(c) CCZOC; (d )  CV30. 

markedly through the concave bends but have collapsed almost t o  zero a t  exit from 
the convex bend. The numerator of each transport velocity (e.g. u3)  is the triple- 
product group whose gradient with respect to  y (e.g. &T/ay) is the turbulent transport 
term in the transport equation for the denominator (e.g. u;). If turbulent transport 
were apure convection by the large eddies, which is a t  least a good approximation to the 
facts, the transport velocities would be the ensemble-average V-component velocities 
of the large eddies. Normalized by the local mean velocity they would then give the 
tangents to the average large-eddy trajectories; in figures 14 and 15, Uref is used for 
later convenience. The extremely small value of the turbulent energy transport 
velocity a t  exit in CV30 (figure 15d) suggests that the large eddy structure has been 
virtually destroyed by the convex curvature. 

3.2.2. Recovery. The exit profiles in figures 8-15 (symbol 0) represent the states 
of the turbulence very shortly after the regions of stabilizing or destabilizing curvature. 
The subsequent behaviour can be qualitatively explained from the interaction of the 
mean-velocity and shear-stress profiles ( 5  4); a quantitative treatment must take 
account of the perturbations in the structure parameters and the transport velocities, 
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but we postpone discussion of the structure, and of the large spanwise variations in the 
concave cases, until Q 5. 

Downstream of the convex bend, CV30, the turbulence intensity and shear-stress 
in the outer layer increase, and typical values of aUl8y in the inner layer decrease, 
towards the self-preserving state. A combination of the high values of aUli3y and of 
turbulent transport from below then causes turbulence quantities in the outer layer 
to rise above the self-preserving values. Figure 10d, in particular, shows the way in 
which the above-mentioned peak in shear stress near y/6 = 0- 1 propagates outwards 
as a 'stress wave' (more properly a 'stress bore') and the turbulent transport velocities 
in figure 14 and 15 develop solitary waves related to this. The behaviour can be related 
to that of the curved mixing layer of Castro & Bradshaw (1976), in which collapse of 
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the triple products (turbulent transport) leads to trapping of newly produced turbulence 
near the axis and thus to a rise above the self-preserving values. The 'stress bore' 
phenomenon did not appear in Castro & Bradshaw's flow; their measurements of 
profile peakiness (their figure 4 and p. 287) should have given some hint of it even if 
two stress bores, propagating in opposite y directions, appeared near the axis. However 
the rise above the self-preserving values did eventually extend to the whole profile, 
as in the present case. 

Downstream of the concave bends the large shear stress gradients continue to 
reduce aU/ay and H further below the self-preserving values. The minimum value 
of H in CC3OC is 1-21 and the corresponding value of the Clauser parameter G is 4.04 
compared with the self-preserving value of about 6.8. However the reduction in 
aU/ay leads to a decrease in the rate of generation of all Reynolds stresses and a very 
rapid collapse of turbulent activity ensues. The details depend on the case considered; 
CC3OC shows the largest effects. By x = 183 mm, 88, downstream of the exit, the 
shear stress in the rapidly responding inner layer has fallen below the upstream value 
(figure 10a) although the shear stress a t  the surface, and in the outer layer, is still 
well above the upstream value; thereafter, the surface shear stress continues to 
decrease, but only slowly, while the shear stress a t  y /S  = 0.2 (say) decreases with 
increasing x to barely half the upstream value, and the shear stress further out in the 
layer falls even more. It will be seen below that the 'eddy viscosity' -&/(aU/ay), 
whether expressed as a dimensional quantity or normalized by U,S* as usual, 
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remains well above the upstream value: thus the main reason for the collapse in Rey- 
nolds stress is the great decrease in aU/ay (figure 7) brought about by the high shear- 
stress gradients in and just downstream of the bend. It is perhaps not surprising that 
the shear-stress parameter a; should fall below its usual value if aU/ay is smaller 
than usual, but its decrease to barely half the upstream value (figure 13a) isremarkable. 

The situation (large anisotropy and small mean shear) approximates the classical 
case of homogeneous turbulence emerging from a prolonged plane strain, and the 
rate of decay of anisotropy is comparable. For further analysis, see A. 

It can hardly be doubted that the flow would in each case return to the self-preserv- 
ing state if the test rig were long enough (and high enough to prevent the boundary 
layers meeting). However, the fact that the shear stress in the concave cases is so low, 
and still decreasing, at  the last measurement station (458, downstream of the bend 
exit in the case of CC3OC) is a most spectacular consequence of destabilizing curvature ! 

4. Approximate analysis of impulse response 
4.1. Initial response 

Bradshaw (1973, 1974) argued that the time of response of the turbulence to a vary- 
ing extra strain rate would be related to the conventional response time of about 
3/(aU/ay) or, better, 3L/74, where 7 is the kinematic shear stress -& and L is the 
dissipation length scale d/e;  3L/d _N 0 - 5 3 / e ,  which is Townsend’s dissipation time 
scale. If production and dissipation of turbulent energy are equal (local energy 
equilibrium) and = 67, the two definitions of response time are the same. The final 
response of some structure parameter to the prolonged application of a constant, 
small extra rate of strain e can be plausibly expressed in a linearized and dimensionless 
form by an amplification factor 1 + a, eL/.r*, where d / L  is now being used as a typical 
r.m.5. eddy strain rate. The empirical ‘constant’ a, is of order 10 for several types of 
extra strain rate. Undoubtedly the response is not truly linear (e.g. Hoffmann & 
Bradshaw 1978); Koyama et al. (1978) have - in effect - derived values of a, as a 
function of e L / d  for the boundary layer on a surface rotating about a spanwise axis. 
However the weakest feature of the assumed amplification factor is its dependence 
only on the local rate of strain rather than on the rate-of-strain history. The response 
to a varying extra strain rate can be expressed, again in a plausible but unrigorous 
form, by replacing aoe  by an ‘effective’ value E ,  governed by a simple first-order 
equation 

T i  
(a,e - E )  -. dE u- = 

ax L 

Strictly the equation should be written in terms of the mean transport operator 
D/Dt,  rather than as an ordinary differential equation, but this would be an un- 
realistic refinement in a linearized treatment that neglects turbulent transport. 
In  the outer layer of a conventional boundary layer U L / d  is roughly 108. 

Now from (2), the value of E at the end of a small strain impulse s e dt = 6, where the 
integral is evaluated following the motion of the fluid and can be replaced approx- 
imately by s (e/ U )  dx or e dx/ U ,  is given by 

a* 74 
E = - 6 .  

L (3) 
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The effective amplification factor 1 + EL/?* becomes 1 +ao 8. In the case of streamline 
curvature, e = aV/ax = - U/R (where R is strictly the radius of curvature of the 
streamline) so that 8 as defined above is the turning angle, positive on a concave 
surface ( R  < 0). Note that although l e  dt is required to be small, e need not be. The 
analysis shows that the response of a structure parameter to a small rate-of-strain 
impulse is independent of position in the shear layer since y-dependent factors cancel. 
In practice a true impulse, with infinite e but finite 8, cannot be applied, and, especially 
near the surface where L / d  is small, the structure parameters will approach their 
equilibrium values in response to the finite rate of strain e. The above analysis is 
illustrated by t,he behaviour of - z/#(g +?) shown in figure 13; a t  exit from each 
bend this parameter is roughly constant across the boundary layer, except near the 
surface where the equilibrium effect of e is small. Of course 8 is not small in the present 
experiments and this, plus the failure to apply a true impulse, means that quantitative 
predictions from the above linear analysis are not reliable. Rapid-distortion theory 
would cope with large turning angles but is valid, by definition, only over times that 
are short compared to the eddy response time (i.e. distances short compared with 
U L / d  or roughly 108). 

It is remarkable that the equilibrium value of the amplification factor for the 30 
degree concave bend, based on aU,fay a t  the exit, is about 1 + 0.301, (say 4.0) a t  
y/S = 0.3-0.4, while the actual increase in shear stress a t  the exit is a factor between 
2 and 5 depending on z. The amplification factor relates to structural parameters 
rather than dimensional, derived quantities like shear stress, but it is evident that the 
response to large rates of strain is certainly not much smaller than that predicted 
by the linear formulae developed for small rates of strain. That is, nonlinearities do 
not seriously limit the response even when the destabilizing extra strain rate is large 
as in the present case. 

4.2. Recovery 

We discuss the recovery of the boundary layer, after the extra strain rate has fallen to 
zero, in terms of a crude Reynolds-stress-transport model that gives simple analytic 
results. Consider constant pressure flow and write the mean-motion equation and the 
Reynolds shear-stress transport equation in two dimensions as 

DU a7 
Dt ay’ 
- = -  

Dr aU au dv 
Dt aY ay ax 
- = v2--pt (-+-)+ .... 

(4) 

Differentiating (4) with respect to y gives, using the two-dimensional continuity 
equation but without further approximation, 

Writing X for the perturbation in aU/ay from its initial value, and making some 
plausible approximations in (6) typical of those used in turbulence models (see 
A for details), it can be shown that 

r*DX 7 

Dt2 S Dt 62 
-+1*5--+2*5-X = 0, 
D2X 

(7) 
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where the values of the coeEcients are rough estimates. This equation represents 
damped simple harmonic motion with a time period (following the motion of the fluid) 
of about 48/74 and damping of about half the critical value. 

The result that the response of a turbulent shear layer to a perturbation is a damped 
oscillatory variation in aU/ay (and 7 )  would still hold if the coefficient of DXIDt  was 
up to twice the estimated value or if the coefficient of X were up to four times smaller. 
It can be deduced from equation (6) that the shear-stress perturbation varies in 
quadrature with the perturbation in velocity gradient. I n  practice the response is 
nonlinear; the period will be closer to the local value of 48/74 than to the initial value, 
and the present results show that if 7 falls to  a low level the period of oscillation becomes 
very long. However the above demonstration that oscillatory response can occur, 
even when the choice of structural parameters is appropriate to a mildly perturbed 
layer, is useful; in particular it warns us not to attribute the oscillatory response of 
the present flow solely to large structural changes caused by curvature. 

5. Discussion 
The general behaviour of the mean velocity and shear-stress profiles has been 

qualitatively explained in § 3, with some quantitative but empirical analysis in 
5 4. We now discuss the detailed behaviour of the mean velocity, Reynolds stresses 
and triple products, with emphasis on the changes in those dimensionless structure 
parameters that are effectively constant in conventional boundary layers. 

5.1.  The mean velocity profiles and cr 

The mean profiles are plotted on semi-logarithmic scales in figures 7(a ) - (4 .  The 
values of the friction velocity u,  = V,  d(+c,) used in figure 7 were chosen, by a computer 
routine, to optimize the fit to the logarithmic law of the wall close to the surface. 
The additive constant in the logarithmic law was chosen as 5.2, rather than the 
usual value of 5.0 (Coles tk Hirst 1969, p. 5): several sets of measurements in un- 
disturbed wall shear layers a t  Imperial College (see, e.g., Brederode & Bradshaw 1978) 
show that this value gives the best agreement with Preston-tube measurements of 
surface stress, using the calibration of Pate1 (1965) which appears to be of very good 
accuracy. The profile €or CV30 at x = 30 mm (figure 7 h) has defeated the computer 
routine and the dotted line, for which u, is reduced by a factor of 0.88, is a more 
plausible fit. Elsewhere, the region of logarithmic fit is extensive enough to give fair 
confidence in the value of u, : recall that the effects of extra mean strain rates decrease 
near the wall because the r.m.s. eddy strain rate increases, and that a t  the profile 
measurement stations the pressure gradient is small enough to have no effect on the 
viscous sublayer or the additive constant in the logarithmic law. 

The development of the dip below t.he logarithmic mean-velocity profile within the 
concave bend is shown in detail in 11, but merits a qualitative explanation a t  this 
point. The effect of destabilizing curvature is to increase the dissipation length scale 
L (normally 0.41~) by an amount that increases with distance from the wall. Thus 
the mean velocity gradient predicted from the local-equilibrium formula, 

T a u  73 

aY L 
production = - = dissipation = -, 
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tends to decrease below the standard value, u,/(O-41 y ) ;  evidently this tendency 
overwhelms the increase in aU/ay caused by an increase in shear stress. Similar effects 
of unusually large length scales are found in reattachment regions (Bradshaw & Wong 
1972; Chandrsuda 1976). I n  the present measurements for CC30 the dip is still pro- 
nounced at x = 335 mm, about 158, from the exit, but has vanished - though the 
profile shape is still odd - by x = 635 mm (298,). The behaviour in CC30T is similar. 
In CC20 the dip has just disappeared a t  x = 310 mm. In  CV30 the departure from the 
logarithmic law again occurs close to the surface but, being in the usual sense, is less 
spectacular. The conventional ‘ wall-plus-wake ’ profile families would clearly produce 
poor fits, especially to the CC profiles. 

5.2. The shear-stress projile 

The shear stress and the normal stresses are linked via the generation terms in their 
transport equations; it is simplest to  discuss the shear stress first, and then consider 
the structural parameters defined as ratios of shear stress to various combinations of 
normal stresses. The general features of the shear-stress response, large increase or 
decreases within the concave or convex bends followed by a return to  equilibrium 
which is non-monotonic in each case, have been discussed above. Here we concentrate 
on the return to equilibrium. 

The most remarkable feature of the shear stress profiles for the concave bends at  the 
spanwise position of maximum cf (the ‘ crest ’) is the persistence of the low values in the 
outer layer. In  CC3OC the last three profiles, covering a distance of over 600 mm or 
30 times the entry boundary-layer thickness So, are virtually identical when plotted 
against y/S (or against y itself, since S increases by only about 20 per cent between 
these stations). The less extensive measurements for CCBOC suggests that the behaviour 
there is similar. I n  CC30T, the shear stress in the outermost part of the layer remains 
above the initial value and the general level is much higher than at the crest position. 
This is partly the result of the higher values of shear stress a t  exit, but the differences 
in profile shape at x N 900 in figures 10 ( a )  and 10(b )  (solid triangles) are in the sense 
which would be produced by transport towards the wall a t  the crest position and 
transport away from the wall at  the trough. Transport in these senses can be provided 
by longitudinal vortices whose axes lie midway between the peak and trough positions, 
and whose diameter is somewhat less than the layer thickness so that the V component 
velocities at y/S N 0.5 are larger than near y/S = 1 .  Figure 6 (h )  shows the spanwise 
variation of the tranverse shear stress, -=, for CC30 a t  x = 945 mm, y/S 21 0.09. 
Comparison with the spanwise variation of u component mean velocity, figure 6 ( e ) ,  
shows that -= is roughly proportional to 8Ula.z: the maximum value of I a E / a z I  
is only about 15 per cent of the local value of )az/ayI, so that, as might be expected 
from the persistence of spanwise variations in general, the transverse transport of 
momentum does not have a large effect on the U component of mean velocity. Clearly 
uw opposes the transport of momentum by the W component associated with the 
hypothetical longitudinal vortices. A final summary of the evidence for longitudinal 
vortices is given in 3 5-5. 

On the convex side of the duct, the most noticeable feature of the recovery is the 
‘stress bore’ which will be discussed in connexion with the triple products in $ 5 . 4  
below. The overshoot of the shear stress in the outer layer above the upstream values 
is pronounced, although cf remains below the constant-pressure value. The results 
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are a useful example of the way in which a turbulent region will grow to fill the whole 
of a region of mean shear. 

5.3. The intensity profiles 

The profiles of cz and v2 (wz was not measured in the present experiment) follow the 
same general trend as - uv but less strongly. The sum 2 + vzis invariant with respect 
to rotation of the axes so that the change that occurs round the bend can be attributed 
wholly to streamline curvature effects: it is too large to be explained entirely by the 
change in turbulent energy production -uv  aU/ay and therefore corresponds to a 
change, of opposite sign, in the dissipation rate. The behaviour of the terms in the 
transport equations for turbulent energy and shear stress will be discussed below; 
the simplest way to discuss the intensity measurements themselves is to consider 
the dimensionless parameters a; =- - &/[j(Gz+?)] N - uv/ (uZ + vz+ 2)) or vZ/u2. 
Townsend (1976, p. 107) tabulates values of the various stress ratios in undistorted 
shear layers. 

On the concave side of the 30 degree bend, u; (figure 13a) increases from the up- 
stream value of about 0.13 over most of the layer to a maximum value of about 0.20 
a t  exit from the bend, slightly more for CC30T than for CC3OC. This maximum value 
is attained only for y/S > 0.4; for y / S  < 0.1, where curvature effects are small, a; 
remains near the upstream value. Further downstream of the exit, a; decreases with 
increasing x, the profile developing a dip in mid-layer; the values for CC3OC are still 
falling at  the end of the test section where the minimum value on the profile, a t  
y /6  N 0.5, is about 0.065, half the upstream value and a third of the maximum. In 
CC30T, a; has returned to the upstream value by the end of the test section, but 
appears to be still decreasing. In  CC20, the behaviour is a less violent form of that in 
CC30; the maximum value of a; is about 0.19 and the value at  the last station, again 
still decreasing with x but in this case varying little with y, is nearly 0-10. These 
results show that in the region of ‘recovery) from the effects of the bend the efficiency 
of maintenance of shear stress, represented by a;, decreases; the decrease is not as 
marked as in the shear stress itself because the intensities also decrease, but the 
structural changes are large, particularly at  the ‘ crest ’. Abnormally low values of the 
shear-stress correlation coefficient - uv/ (u2 .  v2)) were found by So & Mellor (1975) 
in their prolonged concave bend, and attributed by them to the effects of longitudinal 
vortices: however the low values occurred at  the trough while in the present case they 
occur at  the crest. 

A t  exit in CV30, a; falls significantly below zero in the outer half of the layer: the 
actual values are the ratios of small measured quantities and should not be taken as 
accurate in detail. At the next profile downstream, 6 boundary-layer thicknesses later, 
a; has practically recovered to its upstream value for y /S  < 0.8, and recovery in the 
outer 20 per cent of the flow follows soon after. The shear stress and intensities, it  
will be recalled, actually overshoot the upstream values but this can be explained 
without invoking structural changes. Indeed, because the stabilizing effects are so 
large, the turbulence is almost obliterated in the bend and the newly created turbu- 
lence does not experience any curvature effects on its structure except through faint 
memories of the behaviour in the bend. 

The shear correlation coefficient, and the ratio - uv/u2, tend to follow the behaviour 

_ -  
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of a;: the maximum value of the shear correlation coeficient, a t  exit from the bend in 
CC30T, is 0.64 compared t o  an upstream value of about 0.43. 

It seems likely intuitively that the main effect of the stabilizing or destabilizing 
‘centrifugal’ body forces produced by the curvature will be on the v (radial) com- 
ponent, and the ratio v2/u2 is therefore of some interest. Values are not plotted here 
because the main trends can be easily summarized. At y/S z 0.5 the upstream value of 
v2/u2 is about 0.4. I n  CCSOC it rises to 0-57 a t  exit and then falls back to about 0.5 
by the next station: taken a t  face value the data show a fall to 0.47 a t  x = 335 and 
then a rise to 0.54 a t  the end of the test section, but i t  is difficult to believe that there 
are really two maxima. I n  CCSOC v2/u2 rises to  0.5 a t  exit and then falls back to about 
0.42 with no further consistent trend within the test section. I n  CCSOT, v2/u2 a t  
y/S N 0.5 falls to  0.35 at exit and continues falling to  a near-constant value of only 
0.25. I n  CV30, v2/u2 a t  y/6 21 0.5 remains near 0.4 except that the measured value at 
x = 183 is 0.5; this is the point a t  which the outgoing ‘bore’ of newly created turbu- 
lence has reached y/6 fi 0.5, and evidently small structural changes occur near the 
bore. 

The inner-layer values of v2/u2, like the values of a;, are little affected by curvature. 
In summary, v2/u2 rises, as expected, a t  the end of the concave bends, but thereafter 
the behaviour is almost the opposite of the behaviour of a;, high values persisting 
at cf, max and low values soon appearing at cf, min. The convex-side behaviour is 
unremarkable. 

_ -  

--  

- -  
_ _  

- -  

- -  
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5.4. The triple products 

Triple products of velocity fluctuations appear in the turbulent-transport terms of 
the transport equations for turbulent energy and shear stress, and seem to be deter- 
mined mainly by the large eddies. They are likely to be strongly affected by curvature, 
but few measurements have been made in curved flows. The measurements of 
Ramaprian & Shivaprasad (1  978) were made with unlinearized (constant-current) 
hot wires and appear to  be seriously in error; their values of &/I,$ on a flat surface 
are smaller than our values a t  entry by a factor of about 1.7 (1.5 in the case of 7). 

The triple products are most conveniently presented and discussed in the form of 
y component turbulent transport velocities for shear stress and turbulent energy, 
defined respectively as -- 

v, = UV”UV (9) 

and 

where 4“ = u2+v2+ w2 and the last element of (10) is the approximation measured 
in the present experiment. The results are presented as V,/U,,, and V,/U,,,, which are 
not true turbulence parameters; strictly, Jc and V, should be normalized by a typical 
velocity scale of the outer-layer turbulence, say [I ( - uv)  dy/S]&, where the integral is 
over the outer layer only, but the choice of such a scale would be controversial and 
confusing. The neglect of pressure transport is also controversial and is discussed 
in A. 

If the transport equation for a Reynolds stress reduces to  ‘mean transport = 

turbulent transport’ a t  the edge of the boundary layer, which is true for turbulent 

- 
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energy (‘advection’ = ‘diffusion’) but not for shear stress, then the turbulent trans- 
port velocity at the edge is equal and opposite to the entrainment velocity. I n  this 
case, normalization by t! gives an immediately recognizable quantity; li/Ue is equal 
to d(S - S*)/dx in a constant-pressure, two-dimensional boundary layer. In  undis- 
turbed boundary layers, 1; and rise roughly linearly from the surface to plateau 
values a t  the edge of the flow. At the Reynolds number of the present tests, the 
plateau values for V , / C <  and li/L$ are respectively 0.04 and 0.016. 

A t  exit from the bend in CC3OC, 1; has almost doubled and Ji almost trebled, except 
in the outer third of the boundary layer where the exit values reach plateaux while 
the upstream values are still increasing with y (the absolute values of triple products 
increase by factor of six or more in mid-layer; recall that these increases occur over a 
streamwise distance of about seven boundary-layer thicknesses). It is noteworthy that 
the transport velocities remain positive although the intensity and shear-stress profiles 
have pronounced peaks at y/S N 0.3-0.4; a ‘gradient diffusion‘ model of turbulent 
transport would give the wrong sign for the triple products in the inner third of the 
boundary layer, probably leading to prediction of large changes in the inner layer which 
do not in fact occur. In conventional boundary layers where shear-stress peaks result 
from prolonged pressure gradient, turbulent transport in the inner layer is towards the 
surface, as is well shown by recent measurements in nearly self-preserving boundary 
layers a t  R.A.E., Bedford (L. F. East, private communication). Further downstream 
on the line of cf, max the transport velocities in the outer layer decrease again, V, a t  once 
but V,  only for x > 335. At the last station, 1; in the outer layer has fallen slightly but 
significantly below the initial value while J: is somewhat above it. Inner-layer values 
of both transport velocities increase to maximum values as large as the outer-layer 
plateau values in the undisturbed boundary layer by x > 335, and then decrease 
slowly; this reflects the appearance of large negative gradients of shear stress and 
intensity in the inner layer, and implies quite large changes in inner-layer structure 
not apparent from the second-order parameters like u;. 

In  CC30T the behaviour is similar to that a t  cf,  mltx except that V,  and V, go negative 
in the inner layer a t  the exit station only (the positive slopes of the shear stress and 
intensity profiles being even larger here than on the line of cf ,max) .  The subsequent 
rise in inner-layer values is also smaller (the intensity profiles a t  c f ,  min do not develop 
the large negative gradients in the inner layer found at  cf, ma x). As usual, the behaviour 
in CCZOC is similar to that in the CC30 cases but less pronounced. 

In Cv30, V, a t  exit is almost exactly zero for y/S > 0.3, while in the inner layer a 
peak, nearly as large as the plateau value in the upstream boundary layer, appears. 
Subsequently the peak propagates outwards, although even outside the peak the V,  
values start to recover. The peak in 1; occurs a t  about the position of maximum 
negative a ( 2  + 3)/ay. At the end of the test section, V, slightly exceeds the upstream 
values in the outer half of the layer. At exit from the convex bend V,  goes to infinity 
a t  y/6 = 0-6, where -G passes through zero. As in V,, a peak appears near y/b = 0.9 
and propagates outward in step with the negative peak in a( - u<)/ay. The recovery 
of V ,  and V, in the convex bend is much slower that that of a;, but keeps pace with the 
recovery of the shear stress and intensity. The general behaviour of the transport 
velocities is consistent with the expected dominance of turbulent transport by the 
large eddies. Since the large eddies contain (as well as transporting) most of the energy 
and shear stress we expect their reaction time to be of the same order as that of the 
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energy. Alternatively, one might argue that since the response to a perturbation can- 
not be complete until large eddies have had time to migrate across the shear layer, the 
reaction time should be of order 6/v a t  least; however, as shown in A, the speed of 
propagation of a disturbance exceeds the transport velocity itself. 

The triple products themselves are determined by transport equations which have 
turbulent-transport terms of their own. To the thin-shear-layer approximation, the 
turbulent transport term in the 3 equation is a(2p’uv/p + G ) / a y  so that the contri- 
bution of the quadruple velocity product leads to a ‘transport velocity’ uv3/uv2. 
Measurements for CCSOC (see A) show that the behaviour of the transport velocity of 

and?: in the inner 
layer, it reaches a value of nearly 0.5Ur,1, not much less than the local mean velocity, 
while in the outer layer it falls towards zero with no indication of asymptoting to a 
value of order U,dS/dx  as V, does. Downstream of the bend in CC3OC, the transport 
velocity o f 2  follows very roughly the same trend as the shear stress, large values a t  
exit being followed by a rapid decrease further downstream; results for the other cases 
also tend to follow the trend of shear stress. While the accuracy of the results may not 
be high they undoubtedly demolish the hypothesis of roughly equal transport veloci- 
ties for all quantities transported by the large eddies. However, the transport velocity 
of G2 is better behaved than its eddy diffusivity; the profiles of 2 just downstream 
of the bend in CC3OC have marked peaks near y /6  = 0.4, but the turbulent transport of 
uv2 is everywhere outwards (i.e. G3 is positive). 

As shown in A, the ‘bore ’ of turbulent intensity that propagates outward from the 
inner layer downstream of the convex bend is the joint result of turbulent transport 
and of interaction between the turbulence and the mean flow. 

-- 

in CC3OC is nothing like that of the transport velocities of 

- 

5 .5 .  Longitudinal vortices 

As in the case of most other experiments in curved flows, the results are consistent 
with the presence of nearly steady contra-rotating longitudinal vortices in and down- 
stream of the concave bends. The spanwise variations are so large that the amplitude 
of any spanwise wandering of the vortex positions must be a small fraction of 6. 
Johnston et al. (1973) found significant wandering and intermittency of the vortices 
in a rotating duct flow, especially for weak rotation corresponding to curvature with 
SIR of order 0.01. However, the essential difference between a boundary layer and a 
fully developed duct flow is that, by definition, the latter is independent of entry 
conditions whereas a growing boundary layer in a wind tunnel continues to entrain 
weak longitudinal vorticity created by the damping screens: it therefore acquires 
spanwise variations, even on a plane surface, and these evidently determine the dis- 
tribution of the much stronger longitudinal vorticity that arises via the Taylor- 
Gortler inviscid instability mechanism. Since the disturbances caused by the screens 
have an irregular waveform (large range of spanwise wavelengths) the curvature- 
induced vortices can select an average wavelength related to the boundary-layer 
thickness although, as the present results (e.g. figure 6) show, the vortex ‘crest’ 
positions usually correspond to  some of the maxima in the upstream cf pattern. 
Preliminary measurements in the present work certainly showed that the position, 
and to some extent the amplitude, of spanwise variations of skin friction and other 
properties depended on the wind-tunnel screens. It should be noted that on aircraft, 
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or in turbomachines, spanwise variations will be introduced by variations in transition 
position, which is extremely sensitive to surface imperfections; therefore the vortices 
formed on concave surfaces will probably be fairly steady as in the present case. The 
upstream boundary layer in So & Mellor’s experiment was more uniform than ours, 
but their vortex pattern appeared to be steady and very strong, although, curiously, 
they report negligible spanwise variations in skin friction despite variations of more 

than 10 per cent in the mean velocity in the inner layer. The measurements of Ellis 
& Joubert (1974) in curved ducts of aspect ratio about 1 3 : l  showed spanwise 
variations in the case of the 75 in. radius duct but not in the 15 in. radius duct, the 
variations in the former case being unaffected by entry disturbances. Evidently a 
vortex system which is steady enough to affect the mean velocitycan occur in a curved 
duct, but may not always do so. 

So & Mellor (1972, 1975) discuss the vortex pattern in some detail. Their original 
suggestion (1972) that  two co-rotating vortices, one above the other, occur at a given 
spanwise position is not reasonable; internal shear layers would form between such 
vortices and almost certainly lead to their amalgamation. So & Mellor also produce 
evidence that the vortex pattern weakens a t  large distances downstream from the start 
of curvature even though SIR remains large. This is likely to be a transient effect, 
caused by the decrease in the ratio of vortex wavelength to boundary-layer thickness 
6 as S grows; vortices of diameter much less than the shear-layer thickness are likely 
to be destroyed by turbulent mixing and the above-mentioned bias against co-rotating 
vortices implies thatpairs of vortices will disappear. Even in a test rig of infinite width, 
the disappearance of one pair is likely to trigger the disappearance of another pair two 
or more wavelengths away, and so on, so that the average wavelength may increase 
in fairly sudden jumps of a factor of two (say) every time S has doubled (say) rather 
than increasing more slowly due to  sporadic disappearances. Clearly, the strength of 
the vortices would be affected by wavelength changes, but on a surface of constant 
S/R the long-term average strength should remain constant. I n  test rigs of finite width, 
side-wall constraints are likely to affect vortex behaviour, as is notoriously the case for 
flow between rotating cylinders: in the present work the test-rig width was 35 times 
the boundary-layer thickness a t  entry, So, so that 17 or 18 vortex pairs, each with 
diameter So, say, could be accommodated. At the end of CC30, the ratio of boundary- 
layer thickness torig width was roughly &, about the same as in So & Mellor’s 
concave-wall flow. Meroney & Bradshaw (1975; see also Hoffmann & Bradshaw 1978) 
with the same entry conditions as the present work but S/R N 0.01-0.02, found 
spanwise variation of cf suggesting longitudinal vortices but Ramaprian & Shivaprasad 
(1978), again with S/R 2~ 0.01-0.02 but with a ratio of boundary layer thickness to rig 
width of as much as 8 ,  found no evidence of the presence of vortices. So & Mellor suggest 
that the weakening of the vortices in their flow caused an increase in turbulent inten- 
sity; if this is a general result the causative connexion may not be direct. It is note- 
worthy that the ratio of the boundary-layer thickness a t  the trough to that at the 
peak was almost 2:  I in So & Mellor’s flow but never exceeded 1.3: 1 in CC30: the 
prolonged curvat’ure in So & Mellor’s flow evidently produced very strong vortices 
indeed. 

The explicit evidence for the presence of vortices is shown in figure 6. Figure 6 (d)  
shows the remarkable persistence of the cf pattern downstream of the 30 degree 
concave bend, and figure 6(e) shows a similar persistence in the lateral variation of 
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mean velocity U a t  y/S -N a. Figure 6 (9)  shows that the patterns for the three measured 
Reynolds stresses a t  y/6 N 4 are very similar to each other and a reasonably exact 
inverse of the patterns for cf or U .  The triple-product patterns in figure 6 (h )  are close 
to each other and to the cf pattern: the ratio of ‘ crest’ to  ‘trough ’ values a t  y /6  N is 
as much as 5: 1. An explanation for these results is that negative values of V - 7 due 
to vortex motion near the ‘ crest’ (figure 6 f) lead to the inward transfer of fluid with 
high mean velocity and low Reynolds stress; the logarithmic law ensures that high 
surface shear stress goes with high mean velocity, and the result is large negative 
gradients of Reynolds stress near the surface leading to large outward transport by 
triple products. Near the ‘trough’ the opposite effect occurs. 

The V measurements a t  x = 1443 mm (figure 6f) show a very similar pattern to 
cr: however, the measurements a t  x = 168 do not correspond very closely to cf. In  
other respects the vortices appear to be fully formed a t  the bend exit, but it must be 
remembered that V and W are quite small: estimating the vortex diameter as 20 mm 
and the circumferential velocity as 0.05U,, the distance for the vortex to complete one 
revolution is about 1200 mm, the same order as the downstream length of the test rig. 

The large spanwise variation of mean quantities described above are strong evidence 
for the presence of mean longitudinal vortices and the work of Johnston et a1.(1973) 
suggests that the eddy structure consists mainly of (fluctuating) longitudinal vortices 
also. The fluctuating longitudinal vortices will decay in plane flow, and will eventually 
be replaced by the ‘mixing jet’ large-eddy structure (Grant 1958: Brown & Thomas 
1977)’ typical of plane flows, whose predominant vorticity is spanwise. Now it seems 
very likely that the intermediate stage, in which the large eddies are a mixture of 
longitudinal vortices and mixing jets interacting with each other, will be a rather 
inefficient producer of shear stress; put another way, the presence of two competing 
large-eddy systems is unlikely to  lead to higher efficiency than an undisturbed mono- 
poly. This would expla,in the reduction in a;. The general differences between pro- 
perties on the lines of cf, ,,,ax and cf, ,,,in - most notably the fact that  @/a2 is only 
half as large on the latter line as on the former - suggest that the downstream effect of 
the curved region may be exerted partly via the mean-flow inhomogeneities which, 
although not vast in themselves, will tend to  lock the spanwise positions of fluctuating 
vortices. 

5.6. Implications for calculation methods 

As shown in A (see also 11) the shear stress inferred from the mean velocity profiles by 
using standard algebraic formulae for eddy viscosity and mixing length is as much as 
five times the actual shear stress (for CC3OC at y/6= 0-5). Detailed calculations using 
eddy-viscosity transport equations (e.g. the ‘ E ,  E ’  method) have not yet been done 
but accurate predictions would require a fivefold increase in the ratio k2/e compared 
to an ordinary boundary layer. 

Full evaluation of the terms in the Reynolds-stress transport equations from the 
present results for the concave flows is impracticable because of the large spanwise 
gradients and the probability that W is non-zero. However values of the generation 
t e r m 3  aU/ay and part of the mean-flow transport term U a( - z ) / a x  in the shear- 
stress transport equation are given in A for CC30C a t  y /S  = 0.5, to  illustrate an esti- 
mate of the unmeasured pressure-strain ‘redistribution’ term which presents one 
of the main problems in turbulence modelling. The increase in the generation term 

_ -  
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between entry (as represented by values at x = - 251 mm) and x = 30 mm is much 
smaller than the factor of increase i n 3 ,  because aU/ay falls by a factor 1-4: down- 
stream of the bend the generation falls rapidly, being only a tenth of the upstream 
value a t  x = 635 mm (the reduction due to boundary-layer growth on a flat surface 
would be only about 40 per cent), The streamwise component of the mean-transport 
term, averaged between x = - 133 mm and x = 30 mm, is about half the average 
generation: V a( - uv)/ay is more difficult to estimate, since both factors change 
greatly within the bend, but is of the same sign as U a( - uv)/ax although considerably 
smaller. Thus a t  least half the generation of shear stress within the bend actually goes 
into increasing the shear stress and rather less than half is absorbed by the pressure- 
strain term. 

Neglecting turbulent transport normal to the surface, an acceptable approximation 
near y/S Y 0.5, we conclude that the pressure-strain term within the bend (i.e. the 
difference between generation and mean-flow transport) averages only two-thirds of the 
value at  entry (closely equal to the generation term at entry) : the minimum value within 
the bend must be even smaller. This large decrease in the pressure-strain term is all 
the more remarkable when one recalls that part of the pressure-strain term is closely 
associated with the mean-velocity gradient aU/ay and appears to act in direct op- 
position to the generation: it is somewhat unlikely that this part of the pressure-strain 
term will decrease markedly when the generation term increases. The remaining parts 
of the pressure-strain term are that closely associated with the other component of 
the mean strain rate, aV/ax, and that dependent solely on the fluctuating velocity 
field. When the flow enters the region of streamline curvature, only the parts of the 
pressure-strain term that depend on the mean rate of strain can change immediately. 
The aU/ay-dependent term will decrease by a t  most 20 per cent because the mean 
vorticity aV/ax- aU/ay remains constant and aV/ax becomes roughly equal to (and 
rather smaller than) U / R ;  we cannot estimate the aV/ax-dependent part, which is 
initially zero, but it undoubtedly opposes the a Ulay-dependent term in a destabilized 
flow. As the turbulence structure itself changes, the part of the pressure-strain term 
that depends only on the fluctuating velocity field will also change (and will almost 
certainly decrease), while the a U/ay-dependent term may well rise again, following 
the rise in the generation term. Without measurements of the pressure fluctuations it 
is not possible to quantify these inferences, but the combined decrease in the 8 V/ax- 
dependent term and the fluctuation-dependent term is probably at  least as large as 
the original size of the fluctuation-dependent term. 

Estimates of the mean-flow transport term further downstream are likely to be 
unrealistic because of the above-mentioned three-dimensionality but the collapse in 
the generation term is undoubtedly accompanied by a collapse in the pressure-strain 
term. The fact that the shear stress starts to decrease rapidly immediately downstream 
of the bend suggests that the pressure-strain term does not decrease immediately the 
curvature decreases: the best estimate that can be made suggests a small increase, and 
the aV/ax-dependent term does of course increase (from its negative value) as aV/ax 
goes to zero. Again, the size of the fluctuation-dependent term cannot be assessed, but 
its reaction time is expected to be of the same order as that of the energy-containing 
eddies - that is, of order S/( -G)i - so that it will change only slowly. 

- 
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6. Conclusions 
The large changes in turbulence properties that take place in short bends with large 

turning angle (approximating ‘impulses ’ of curvature), and even the non-monotonic 
recovery of the properties to their undisturbed values, can be explained qualitatively 
or semi-quantitatively by existing concepts. Indeed the present results provide an 
excellent demonstration that the response of turbulence to perturbations is a t  least of 
second order (in the sense of control theory) as implied by transport-equation calcula- 
tion methods. However there are significant changes in the dimensionless structure 
parameters of the turbulence, which will in general correspond to changes in the 
‘constants ’ used in transport-equation modelling. In  this experiment we have in- 
vestigated structure parameters based on double and triple velocity products, and 
while no simple laws for their variation have emerged some qualitative explanations 
can be offered. 

The various forms of shear-stress parameter, of which the stress/energy ratio is the 
most relevant to transport-equation modelling, are increased by concave (destabiliz- 
ing) curvature. The increase in the present experiments was the same for 20 degree 
and 30 degree turning angles and appeared to be independent of spanwise position. The 
implication is that saturation values may have been approached: the anisotropy 
parameter K = (2 - v”)/(u2 + w2) reaches as a high a value at  the concave bend exit as 
it does in a prolonged homogeneous plane strain (about 0.65 in each case, compared 
with the asymptotic value of unity predicted by rapid distortion theory). However, 
the increase in dimensional properties such as shear stress shows no sign of saturation 
and can be roughly predicted by the linear formulae developed for small strain rates. 
Convex (stabilizing) curvature leads to large reductions in shear-stress parameters, 
which even reach negative values, and linear formulae are not usable. Downstream of 
the bends, the shear-stress parameters on the concave side decrease below the up- 
stream values. The reason is not clear; the presence of mean longitudinal vortices may 
be partly responsible, and since the large eddies at  exit from the bend probably 
contain unusually large longitudinal-vorticity JEuctuations there may be a period in 
which these have decayed but the conventional mixing-jet large eddies have not 
re-formed. On the convex side, the shear-stress parameters return to the upstream 
values very rapidly, much more rapidly than the shear stress itself. 

The most suitable triple-product parameters are the turbulent transport velocities 
normalized by the free stream velocity (strictly, a turbulent velocity scale should be 
used; for convenience, we used a reference velocity close to the free-stream velocity). 
Their response to curvature is in the expected sense and the recovery generally mono- 
tonic. The large negative Reynolds-stress gradients that occur near the surface some 
distance downstream of the concave bends, and in the outward-propagating ‘ stress 
bore’ downstream of the convex bend, lead to large positive (outward) transport 
velocities in these regions. By contrast, the large positive stress gradients just down- 
stream of the concave bends do not lead to negative transport velocities. It seems 
probable that transport equations for triple products will be needed in calculation 
methods for strongly perturbed flows like the present ones; since the transport 
velocities are much more simply behaved than the triple products themselves, it may 
be convenient to use simplified equations for the transport velocities as such. 

Further work is needed to establish how the strength of the mean vortex pattern 

_ _  
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depends on spanwise inhomogeneities upstream of the curved region, and to study 
large-eddy behaviour by means of conditional sampling techniques. 

This work was initiated a t  the request of the Ministry of Technology, and later 
supported by the Ministry of Defence (Procurement Executive). We are grateful to  
Dr P. H. Hoffmann for the data reproduced in figure 6 (b ) ,  obtained during work on 
longitudinal vortices supported by Brown Boveri et Cie. 
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